MEMS/NEMS
The Hong Kong University of Science and Technology

Professor Yi-Kuen Lee¡¦s MEMS/NEMS Group

Project --- The Latest Projects from the lab

Micro/Nano Capillary Electrophoresis Chip for DNA Separation: Nanopillar array on Microchannels

Capillary electrophoresis (CE) has been used by analytical chemists and biologists for decades. However, the concept of micromachined capillary electrophoresis chip (MCE) since the early 1990s greatly improved the performance and efficiency of CE. It has been not only applied in many different bio-molecules separation such as DNA and protein, but also DNA sequencing, one of the key technology in Human Genome Project. 


Packaged CE microsystem device photo

 


Sub-Micron Pillar Arrays : Si pillar in 0.3m in diameter with aspect ratio > 50

 


DNA separation in a free buffer solution (Click to enlarge)
DNA: Mixture of T4 & EcoR I digested Lambda DNA
E-Field: 33V/cm
Related Video    Related Video (Click here to download)


Microscopic DNA Motions:
Weak E-Field: Brownian Force comparable to Electric Force
Strong E-Field: Electric Force dominates over Brownian Force
Related Video:
7.5V/cm    7.5V/cm (Click here to download)
75V/cm    75V/cm (Click here to download)


Schematic Replication:

           Weak E-Field                              Strong E-Field

 

 

Research Publications

Y. C. Chan, Y.-K. Lee and Y. Zohar, "High-throughput Design and Fabrication of an Integrated Microsystem with High Aspect-Ratio Sub-Micron PillarArrays for Free-Solution Micro Capillary Electrophoresis," Journal of Micromechanics and Microengineering, Vol.16, No.4, pp.699-707, 2006.

Y.C. Chan, et al, "Nonlinear Electrophoretic Mobility of Large DNA Molecules in Microsystem with Sub-Micron Pillar Arrays," IEEE MEMS 2006, Istanbul, Turkey, pp.483-441, Jan 22-26, 2006. 

Y.C. Chan, et al., "Effect of Sub-Micron Pillar Array on DNA Kinetics in a Free-Solution Capillary Electrophoresis Microsystem,"  9th Intl. Conf. on Miniaturized Systems for Chemistry and Life Science (MicroTAS'05), Boston, MA, USA, pp.337-339, Oct 9-13, 2005.

Y.C. Chan, et al., "High-Throughput Fabrication of Sub-Micron Pillar Arrays for Free-Solution DNA Electrophoresis without E-beam Lithography," IEEE Intl Conf. on Robotics and Biomemetics (IEEE Robio'05), Hong Kong and Macau, pp.101-104, Jun 29-Jul 3, 2005.

Y.C. Chan, et al., "Design and Fabrication of an Integrated Microsystem for Microcapillary Electrophoresis," Journal of Micromechanics and Microengineering, Vol.13, No.6,  pp.914-921, Nov. 2003.

Y. Zohar et al., "Electric Field Effects on Micro-Channel Electrophoresis", Transducers'03, Boston, USA, Jun 8-12, Vol.2, pp.1891-1894, 2003.

Y.C. Chan, et al., DNA Kinetics in Microfabricated Devices, IEEE MEMS'02, Las Vegas, USA, Jan 20-24, pp.60-63, 2002.

Y.C. Chan, et al., Glass-silicon bonding technology with feed-through electrodes for micro capillary electrophoresis, Transducers'01, Munich, Germany, Jun 10-14, Vo.2, pp.1166-1169, 2001.

References

F. Sor, A Computer Program Allows the Separation of a Wide Range of Chromosome Sizes by PUlsed Field Gel Electrophoresis, 16(11), 4853-4863, 1988.

 

S.M. Clark, E. Lai, B.W. Birren, L. Hood, A Novel Instrument for Separating Large DNA Molecules with Pulsed Homogeneous Electric Fields, Science, 241(4870), 1203-1205, 1988.

 

S.B. Smith, P.K. Aldridge, J.B. Callis, Observation of Individual DNA Molecules Undergoing Gel Electrophoresis, Science, 243(4888), 203-206, 1989.

 

J.L. Viovy, Reptation-Breathing Theory of Pulsed Electrophoresis: Dynamic Regiomes, Antiresonance and Symmetry Breakdown Effects, Electrophoresis, 10(5-6), 429-441, 1989.

 

W.D. Volkmuth and R.H. Austin, DNA Electrophoresis in Microlithographic Arrays, Nature, 358(6387), 600-602, 1992.

 

J.L. Viovy and T. Duke, DNA Electrophoresis in Polymer Solutions: Ogston Sieving, Reptation and Constraint Release, Electrophoresis, 14(4), 322-239, 1993.

 

D.J. Harrison, K. Fluri, K. Seiler, Z.H. Fan, C.S. Effenhauser, A. Manz, Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science, 261 (5123), 895-897, 1993. 

 

T.M. Fletcher, U. Krishan, P. Serwer, J.C. Hansen, Quantitative Agarose Gel Electrophoresis of Chromatin: Nucleosome-Dependent Changes in Charge, Sharpt, and Deformability at Low Ionic Strength, Biochemistry, 33(8), 2226-2233, 1994.

 

A.R. Volkel, J. Noolandi, Electrophoresis between Sieving and Reptation: Investigation of the Role of Shape Fluctuations in Electrophoresis, Electrophoresis, 16(11), 2086-2093, 1995.

 

J.L. Viovy, Reptation Theories of Electrophoresis, Mol. Biotechnol., 6(1), 31-46, 1996.

 

J.L. Viovy, Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms, Reviews of Modern Physics, 72(3), 813-872, 2000.

 

L. Bousse, et al., Electrokinetically Controlled Microfluidic Analysis Systems, Annu. Rev. Biophys. Biomol. Struct., 29, 155-181, 2000.

 

O. Bakajin, et al., Separation of 100-kilobase DNA Molecules in 10 seconds," Ana. Chem., 73, 6052-6056, 2001.

 

S.W.P. Turner, M. Cabodi and H.G. Craighead, Confinement-Induced Entropic Recoil of Single DNA Molecules in a Nanofludic Structure, Phys. Rev. Lett, 88, 128103, 2002.

 

L.R. Huang, J.O. Tegenfeldt, J.J. Kraeft, J.C. Sturm, R.H. Austin, E.C. Cox, A DNA Prism for High-Speed Continuous Fractionation of Large DNA Molecules, Nat. Biotechnolo. 20(10), 1048-1054, 2002

 

S. Ferree and H.W. Blanch, Electrokinetic Stretching of Tethered DNA, Biophys. J., 85(4), 2539-2546, 2003.

N. Kaji, et al., Separation of Long DNA Molecules by Quartz Nanopillar Chips under a Direct Current Electric Field, Anal. Chem., 76, 15-22, 2004.

H. Zhang and M.J. Wirth, Electromigration of Single Molecules of DNA in a Crystalline Array of 300-nm Silica Colloids, Anal. Chem., 77(5), 1237-1242, 2005.

I.K. Lao and I.M. Hsing, Flow-Based and Sieving Matrix-Free DNA Differentiation by a Miniaturized Field Flow Fractionation Device, Lab on a Chip, 5(6), 687-690, 2005.

Z. Chen and A. Chauhan, DNA Separation by EFFF in a Microchannel, J. Colloid Interface Sci., 285(2), 834-844, 2005.

 



--------------------------------------------------------

Prof. Yi-Kuen Lee's MEMS/NEMS Group
Email to Webmaster